skip to main content


Search for: All records

Creators/Authors contains: "Dickstein, Rebecca"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background

    Various growth systems are available for studying plant root growth and plant–microbe interactions including hydroponics and aeroponics. Although some of these systems work well withArabidopsis thalianaand smaller cereal model plants, they may not scale up as well for use with hundreds of plants at a time from a larger plant species. The aim of this study is to present step-by-step instructions for fabricating an aeroponic system, also called a “caisson,” that has been in use in several legume research labs studying the development of symbiotic nitrogen fixing nodules, but for which detailed directions are not currently available. The aeroponic system is reusable and is adaptable for many other types of investigations besides root nodulation.

    Results

    An aeroponic system that is affordable and reusable was adapted from a design invented by French engineer René Odorico. It consists of two main components: a modified trash can with a lid of holes and a commercially available industrial humidifier that is waterproofed with silicon sealant. The humidifier generates a mist in which plant roots grow, suspended from holes in trash can lid. Results from use of the aeroponic system have been available in the scientific community for decades; it has a record as a workhorse in the lab.

    Conclusions

    Aeroponic systems present a convenient way for researchers to grow plants for studying root systems and plant–microbe interactions in root systems. They are particularly attractive for phenotyping roots and following the progress of nodule development in legumes. Advantages include the ability to precisely control the growth medium in which the plants grow and easy observations of roots during growth. In this system, mechanical shear potentially killing microbes found in some other types of aeroponic devices is not an issue. Disadvantages of aeroponic systems include the likelihood of altered root physiology compared to root growth on soil and other solid substrates and the need to have separate aeroponic systems for comparing plant responses to different microbial strains.

     
    more » « less
  2. Abstract

    Symbiotic nitrogen (N) fixation entails successful interaction between legume hosts and rhizobia that occur in specialized organs called nodules. N-fixing legumes have a higher demand for phosphorus (P) than legumes grown on mineral N. Medicago truncatula is an important model plant for characterization of effects of P deficiency at the molecular level. Hence, a study was carried out to address the alteration in metabolite levels of M. truncatula grown aeroponically and subjected to 4 weeks of P stress. First, GC-MS-based untargeted metabolomics initially revealed changes in the metabolic profile of nodules, with increased levels of amino acids and sugars and a decline in amounts of organic acids. Subsequently, LC-MS/MS was used to quantify these compounds including phosphorylated metabolites in the whole plant. Our results showed a drastic reduction in levels of organic acids and phosphorylated compounds in –P leaves, with a moderate reduction in –P roots and nodules. Additionally, sugars and amino acids were elevated in the whole plant under P deprivation. These findings provide evidence that N fixation in M. truncatula is mediated through a N feedback mechanism that in parallel is related to carbon and P metabolism.

     
    more » « less
  3. null (Ed.)
    Symbiotic nitrogen fixation is a complex and regulated process that takes place in root nodules of legumes and allows legumes to grow in soils that lack nitrogen. Nitrogen is mostly acquired from the soil as nitrate and its level in the soil affects nodulation and nitrogen fixation. The mechanism(s) by which legumes modulate nitrate uptake to regulate nodule symbiosis remain unclear. In Medicago truncatula , the MtNPF1.7 transporter has been shown to control nodulation, symbiosis, and root architecture. MtNPF1.7 belongs to the nitrate/peptide transporter family and is a symporter with nitrate transport driven by proton(s). In this study we combined in silico structural predictions with in planta complementation of the severely defective mtnip-1 mutant plants to understand the role of a series of distinct amino acids in the transporter’s function. Our results support hypotheses about the functional importance of the ExxE(R/K) motif including an essential role for the first glutamic acid of the motif in proton(s) and possibly substrate transport. Results reveal that Motif A, a motif conserved among major facilitator transport (MFS) proteins, is essential for function. We hypothesize that it participates in intradomain packing of transmembrane helices and stabilizing one conformation during transport. Our results also question the existence of a putative TMH4-TMH10 salt bridge. These results are discussed in the context of potential nutrient transport functions for MtNPF1.7. Our findings add to the knowledge of the mechanism of alternative conformational changes as well as symport transport in NPFs and enhance our knowledge of the mechanisms for nitrate signaling. 
    more » « less
  4. Summary

    From a single transgenic line harboring fiveTnt1transposon insertions, we generated a near‐saturated insertion population inMedicago truncatula. Using thermal asymmetric interlaced‐polymerase chain reaction followed by sequencing, we recovered 388 888 flanking sequence tags (FSTs) from 21 741 insertion lines in this population.FSTrecovery from 14Tnt1lines using the whole‐genome sequencing (WGS) and/orTnt1‐capture sequencing approaches suggests an average of 80 insertions per line, which is more than the previous estimation of 25 insertions. Analysis of the distribution pattern and preference ofTnt1insertions showed thatTnt1is overall randomly distributed throughout theM. truncatulagenome. At the chromosomal level,Tnt1insertions occurred on both arms of all chromosomes, with insertion frequency negatively correlated with theGCcontent. Based on 174 546 filteredFSTs that show exact insertion locations in theM. truncatulagenome version 4.0 (Mt4.0), 0.44Tnt1insertions occurred per kb, and 19 583 genes containedTnt1with an average of 3.43 insertions per gene. Pathway and gene ontology analyses revealed thatTnt1‐inserted genes are significantly enriched in processes associated with ‘stress’, ‘transport’, ‘signaling’ and ‘stimulus response’. Surprisingly, gene groups with higher methylation frequency were more frequently targeted for insertion. Analysis of 19 583Tnt1‐inserted genes revealed that 59% (1265) of 2144 transcription factors, 63% (765) of 1216 receptor kinases and 56% (343) of 616 nucleotide‐binding site‐leucine‐rich repeat genes harbored at least oneTnt1insertion, compared with the overall 38% ofTnt1‐inserted genes out of 50 894 annotated genes in the genome.

     
    more » « less
  5. Abstract

    Legumes, comprising one of the largest, most diverse, and most economically important plant families, are the subject of vibrant research and development worldwide. Continued improvement of legume crops will benefit from the recent proliferation of genetic (including genomic) resources; but the diversity, scale, and complexity of these resources presents challenges to those managing and using them. A workshop held in March of 2019 addressed questions of data resources and priorities for the legumes. The workshop identified various needs and recommendations: (a) Develop strategies to effectively store, integrate, and relate genetic resources collected in different projects. (b) Leverage information collected across many legume species by standardizing data formats and ontologies, improving the state of metadata about datasets, and increasing use of the FAIR data principles. (c) Advocate for the critical role that curators exercise in integrating complex datasets into databases and adding high value metadata that enable downstream analytics and facilitate practical applications. (d) Implement standardized software and database development practices to best leverage limited developer time and expertise gained from the various legume (and other) species. (e) Develop tools and databases that can manage genetic information for the world's plant genetic resources, enabling efficient incorporation of important traits into breeding programs. (f) Centralize information on databases, tools, and training materials and establish funding streams to support training and outreach.

     
    more » « less